Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Acta Biomater ; 143: 63-71, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278685

RESUMO

Aging is the largest risk factor for Achilles tendon associated disorders and rupture. Although Achilles tendon macroscale elastic properties are suggested to decline with aging, less is known about the effect of maturity and aging on multiscale viscoelastic properties and their effect on tendon cell behavior. Here, we show dose dependent changes in native multiscale tendon mechanical and structural properties and uncover several nanoindentation properties predicted by tensile mechanics and echogenicity. Alginate hydrogel systems designed to mimic juvenile tendon microscale mechanics revealed that stiffness and viscoelasticity affected Achilles tendon cell aspect ratio and proliferation during aging. This knowledge provides further evidence for the negative impact of maturity and aging on tendon and begins to elucidate how viscoelasticity can control tendon derived cell morphology and expansion. STATEMENT OF SIGNIFICANCE: Aging is the largest risk factor for Achilles tendon associated disorders and rupture. Although Achilles tendon macroscale elastic properties are suggested to decline with aging, less is known about the effect of maturity and aging on multiscale viscoelastic properties and their effect on tendon cell behavior. Here, we show dose dependent changes in native multiscale tendon mechanical and structural properties and uncover several nanoindentation properties predicted by tensile mechanics and echogenicity. Alginate hydrogel systems designed to mimic juvenile tendon microscale mechanics revealed that stiffness and viscoelasticity affected Achilles tendon cell spreading and proliferation during aging. This knowledge provides further evidence for the negative impact of maturity and aging on tendon and begins to elucidate how viscoelasticity can control tendon derived cell morphology and expansion.


Assuntos
Tendão do Calcâneo , Envelhecimento , Alginatos/farmacologia , Humanos , Hidrogéis , Ruptura , Viscosidade
2.
Front Bioeng Biotechnol ; 9: 614508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33644014

RESUMO

A misdirected or imbalanced local immune composition is often one of the reasons for unsuccessful regeneration resulting in scarring or fibrosis. Successful healing requires a balanced initiation and a timely down-regulation of the inflammation for the re-establishment of a biologically and mechanically homeostasis. While biomaterial-based approaches to control local immune responses are emerging as potential new treatment options, the extent to which biophysical material properties themselves play a role in modulating a local immune niche response has so far been considered only occasionally. The communication loop between extracellular matrix, non-hematopoietic cells, and immune cells seems to be specifically sensitive to mechanical cues and appears to play a role in the initiation and promotion of a local inflammatory setting. In this review, we focus on the crosstalk between ECM and its mechanical triggers and how they impact immune cells and non-hematopoietic cells and their crosstalk during tissue regeneration. We realized that especially mechanosensitive receptors such as TRPV4 and PIEZO1 and the mechanosensitive transcription factor YAP/TAZ are essential to regeneration in various organ settings. This indicates novel opportunities for therapeutic approaches to improve tissue regeneration, based on the immune-mechanical principles found in bone but also lung, heart, and skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...